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ABSTRACT

In computed tomography on interventional X-ray systems, image
quality is frequently degraded by uncontrolled patient motion such
as breath-hold failures, intestinal contractions, or nervous shaking.
To overcome this problem, an iterative workflow is proposed to es-
timate a dynamic displacement field representing the time-varying
position of image elements. An elastic signal registration algorithm
computes the displacement in projection space from the difference
between measured projections and reference projections, sampled
from the image reconstructed in previous iterations. Considering the
sampled image as a motionless reference, the motion estimation is
exact for a certain class of deformations, including shifting, expan-
sion, and compression. From a new estimate of the displacement
field, a better image can be reconstructed by introducing motion
compensation in the backprojection step of filtered-backprojection
methods. The result of the first iteration is equivalent to a standard
reconstruction without motion correction and further iterations pro-
gressively sharpen the image.

Index Terms— X-ray tomography, image reconstruction, mo-
tion estimation, iterative methods.

1. INTRODUCTION

A new trend in minimally invasive medical interventions is tomo-
graphic soft tissue imaging for diagnosis, therapy planning, and out-
come control. The interventional room is typically equipped with a
versatile digital radiography system mounted on a robotic C-arm. By
programming a circular trajectory for the C-arm, X-ray transmission
projections can be acquired at regular angular intervals around the
patient. Using computed tomography (CT), a volumetric image can
be reconstructed from the set of projections, unveiling the depth of
anatomical structures.

During a treatment session, the patient will follow several acqui-
sitions for which he is asked to retain a still position while holding
his breath. An acquisition lasts for 10 to 20 seconds for an angu-
lar range of about 240 degrees. Unfortunately, uncontrolled patient
movements yield inconsistent projections, which result in strong im-
age artifacts when using analytical reconstruction methods. For ex-
ample, such residual motion frequently occurs due to breath-hold
failures, intestinal contractions, or nervous shaking.

The present work aims at estimating non-periodic motion from
tomographic projections for high-quality static low contrast imaging
on C-arm systems. This goal is related to more popular problems like
the time-resolved dynamic cardiac reconstruction on closed gantry
scanners [1], the reconstruction from free breathing acquisitions on
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cone-beam systems mounted on radiotherapy linear accelerators [2,
3], or the motion extraction by tracking of fiducials [4].

In the following, only breath-hold (hence, non-gated) acquisi-
tions are considered, for reconstruction of one single static image in
which residual unstructured motion is estimated and compensated.
Because previous efforts assume periodicity of the motion, the de-
velopment of a different technical approach was required. The pro-
posed estimation method relies solely on projections and does not
require biological signal extraction or feature tracking.

The motion correction problem can be split into two comple-
mentary sub-problems: motion estimation and motion compensa-
tion. An analytical motion-compensated reconstruction algorithm
has already been developed by Desbat, Roux, and Grangeat [5, 6].
The reconstruction is exact for the class of deformations that pre-
serves some properties of the projection geometry. The present work
provides a solution for the motion estimation problem in parallel-
beam geometry and for a certain class of deformations, including
shifting and some local expansions or compressions.

The remainder of this paper is structured as follow. First, an iter-
ative motion correction framework is introduced. Then, an algorithm
is derived to compute deformations while assuming the availabil-
ity of a static reference image. A generalization allows estimating
more general motion with a simple elastic signal registration method.
Finally, results are shown for a randomly deformed Shepp-Logan
phantom and conclusions are drawn.

2. MOTION CORRECTION WORKFLOW

In 2D tomography, projections are 1D signals and the projection of
the displacement of image elements can be described by a smooth
strictly increasing bijective mapping function in projection space.
The strict increasing property appears because crossing of two in-
tegration lines never occurs with plausible deformations. In fan-
beam geometry, the position of the focus point is parameterized by
a projection angle and a distance from the detector. Due to relative
motion, the focus position can vary freely over time, describing a
so-called virtual source trajectory. Therefore, all line integrals are
measured between a displaced focus point and pixels, smoothly dis-
placed on the projection axis. The parallel-beam geometry consid-
ered here is a special case of the fan-beam geometry in which the
focus point is at infinite distance from the projection plane. There-
fore, only the projection angle parameter can vary.

If the virtual source trajectory matches the ideal circular path,
the exact motion compensation of Desbat et al. only involves two
slight modifications in the backprojection step of classical filtered
backprojection (FBP) algorithms. First, the integration line joining
the center of the current voxel to the focus point is displaced, ac-
cording to the provided bijective mapping and the line integral value
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Fig. 1. Iterative workflow for motion estimation and compensation.

is fetched at the corresponding pixel in the projection image. Sec-
ond, the line integral is weighted by a scaling coefficient, preserv-
ing the total mass in cases of local expansion or compression move-
ments. The scaling coefficients are proportional to the derivative of
the scalar mapping function.

The iterative motion correction workflow, outlined in Fig. 1, pro-
poses a solution to estimate the mapping function. Data is repre-
sented by ovals and boxes symbolize algorithms. For each iteration,
an attenuation image is reconstructed from the measured projec-
tions using the current estimate of displacement in projection space.
Then, reference projections are sampled by computing the forward
projection through the attenuation image reconstructed so far. The
measured projections are mapped on the reference projections by an
elastic registration algorithm. The resulting warping is a new es-
timate of displacement in projection space that can be used by the
FBP reconstruction with compensation to produce a new, refined,
attenuation image.

The first reconstruction assumes no motion and the resulting im-
age contains artifacts, but may nevertheless be considered as a mo-
tionless reference for the second iteration. Since these reference pro-
jections are sampled from a static image, they are consistent. There-
fore, the registration algorithm will provide a displacement field in
projection space that compensates for inconsistencies when recon-
structing an image from measured projections.

3. MOTION ESTIMATION

Let’s assume the availability of a motionless image from which ref-
erence projections can be sampled. The considered motion estima-
tion problem is to extract the displacement of pixels in projection
space from corresponding measured and reference projections. The
motion is computed independently for each pair of projections.

3.1. Notations

A static 2D image is commonly represented by a Cartesian grid of
point samples, located at centers of identical image elements: usu-
ally, non-overlapping square pixels. It is easy to extend this image
model to represent motion by associating, for each pixel, a descrip-
tion of its displacement over time from the initial grid position. In a
similar way the space is discretized by the grid, the displacement of
pixels can be sampled at several time frames. In this paper, one time
frame is associated with each projection.

Let f (x, y, t), a dynamic 2D image where (x, y) are spatial
Cartesian coordinates and t ∈ [0, 1) is the normalized temporal
position. The function f is positive and compactly supported in a
normalized circular field of view such that f (x, y, t) = 0 when

Fig. 2. Parameterization of line integrals for parallel-beam geometry.

x2 + y2 > 1. Moreover, the total mass M must be preserved:

M =

∫ ∫
f (x, y, t) dx dy, ∀t.

As shown in Fig. 2, a line integral p (θ, s, t) from f is param-
eterized by an angular coefficient θ ∈ [0, π) and a signed distance
from the origin s ∈ [−1, 1] and is defined by

p (θ, s, t) =

∫ l

−l

f (s cos θ + u sin θ, s sin θ − u cos θ, t) du,

where l =
√

1 − s2 is the half-length of the intersection between
the line and the field of view bounded by the dotted circle. The
thick line segment shows the orientation of the virtual detector which
passes through the origin and is orthogonal to the projection direc-
tion. The point of intersection between the line and the virtual de-
tector is (s cos θ, s sin θ) and the normalized direction vector of the
integration line is (sin θ,− cos θ).

The Radon transform of f is the collection of all time-varying
line integrals intersecting the field of view. The Radon transform
provides sufficient data to reconstruct exactly the dynamic image f
at any position in space and time. However, most CT tomographs
are only able to measure line integrals along one projection direction
at a time. To model this limitation, the projection angle θ is assumed
to be linearly dependent on the acquisition time t. Therefore, θ = πt
such that one half circular rotation is achieved when t = 1. In the
following, the Radon transform is defined as the measured projec-
tions

(Rf) (θ, s) = p
(
θ, s,

θ

π

)
,

and this collection of line integrals could be inconsistent since each
projection observes f at a potentially different deformation state.

3.2. Shifting Motion

The translation invariance property of the Radon transform states
that translation in the image domain results in shifted projections.
This important property and its relation to image motion has been
studied further by Milanfar [7]. An image displaced by the transla-
tion vector (dx, dy) is noted

fd (x, y, t) = f (x + dx, y + dy, t) ,

and its Radon transform is obtained by translating each projection:

(Rfd) (θ, s) = (Rf) (θ, s + dx cos θ + dy sin θ) .
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Therefore, analytical estimation of shifting motion is straightfor-
ward by computing a feature point that depends on global translation
in both the measured projection and the reference projection. For in-
stance, the center of mass

μ (θ) =
1

M

∫ 1

−1

s (Rf) (θ, s) ds

can be computed in projection space from the weighted mean of
pixel positions on the virtual detector axis. The difference between
center of masses in corresponding measured and reference projec-
tions yields a signed shifting displacement.

3.3. Global Expansion or Compression Motion

Given the scaling invariance and the linearity properties of the
Radon transform, global expansion or compression in the image
domain results on respectively broader or narrower spreads in pro-
jection space, while preserving the total mass. An image scaled
non-uniformly along the horizontal and vertical axis by the respec-
tive factors sx > 0 and sy > 0, and preserving the total mass is
noted

fs (x, y, t) =
1

sxsy
f

(
x

sx
,

y

sy
, t

)
,

and its Radon transform is obtained by weighting each projection,
translated toward or away from the origin:

(Rfs) (θ, s) =
1

α
(Rf) (θ, sα) ,

where α =
√

(sx cos θ)2 + (sy sin θ)2.
Therefore, analytical estimation of global expansion and com-

pression deformations is also straightforward by computing a value
that depends on the scale of corresponding projections. For instance,
the standard deviation from the center of mass

σ (θ) =

√
1

M

∫ 1

−1

(s − μ (θ))2 (Rf) (θ, s) ds

can be computed for both measured and reference projections. The
ratio of the former on the later yields the scaling factor.

3.4. Shifting and Local Expansion or Compression Motion

As explained above, analytical extraction of motion in projection
space is trivial for cases such as shifting and global expansion or
compression. The center of mass can be computed in projection
space from the weighted mean of pixel positions, in both measured
and reference projections. Their difference gives the projection of
the shifting displacement and the ratio of standard deviations gives
the object scale, as perceived from the projection.

Let N , the number of bins in a projection histogram. The cumu-
lative sum of bins is invariant in respect to the projection angle and
is equal to M . Also, the point located at the center of mass splits the
histogram in two parts of equal partial integrals. Generalizing this
observation, any particular point

pi =
2i − N − 1

N
, i ∈ [1 . . . N ]

of a projection splits the signal in two regions determined by the
values of their partial integrals. Systematic computation of the cor-
respondence between centers of pixels defines a discrete bijective
mapping function that registers two discrete signals.

Fig. 3. Elastic signal registration.

As shown in Fig. 3, the center of every pixels pi of the source
histogram is mapped on sub-pixel accurate locations qi ∈ [−1, 1] on
the target histogram, such that partial integrals are preserved:∫ pi

−1

(Rf) (θ, s) ds =

∫ qi

−1

(Rfref ) (θ, s) ds,

where fref is the motionless reference image. One can remark that
qi ≤ qj , ∀i < j is an invariant of the former relation, ensuring
that the computed discrete function is a strictly increasing bijective
mapping. Offsets between corresponding pixels are displacements
in projection space.

This elastic signal registration procedure can be implemented
by a simple numerical integration method that marches through sub-
pixel locations in the target histogram to find the correspondence
with the centers of pixels from the source histogram. Two corre-
sponding points share identical value for their left and right partial
integrals. Elastic image registration algorithms minimize, usually
iteratively, an image dissimilarity metric. In this case, the dissim-
ilarity is the difference between partial integrals in the source and
target histograms and the solution is not iterative.

4. RESULTS

Results from an experiment with the low-contrast Shepp-Logan
phantom are shown in Fig. 4 and Fig. 5, for random shifting and
non-uniform global compression motion. Measured data has been
simulated for a full rotational acquisition in parallel-beam geometry.
From 256 projections of 128 pixels, images of 128 × 128 pixels are
reconstructed.

Fig. 4 shows the projections and reconstructed images for the
first steps within the iterative motion correction technique explained
in Fig 1. The reconstructed images are shown with 2× 2 magnifica-
tion of pixels size. An efficient correction for the inconsistencies of
input projections is already observed after the second iteration.

Fig. 5 shows the estimated displacement of pixels in projection
space for successive iterations. Bright and dark pixels correspond to
positive and negative offsets, respectively. Residual errors decrease
with increasing iteration number and are mainly located at the edge
of the object, at the border between high and low attenuation regions.
Each row is filled with a gradient: from bright to dark for compres-
sions and from dark to bright for expansions. A constant negative
or positive bias contains the global shifting information. There is
no correlation between rows because the deformations are generated
randomly over time. More complicated motion could yield complex
non-linear variations along the horizontal axis.
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(a) (b) (c) (d) (e)

Fig. 4. Motion correction results. Reconstructions from simulated measured projections (a) of a randomly shifted and compressed phantom
are shown after the first (b) and second (d) iteration. The projections (a) are inconsistent and regular FBP reconstruction leads to a motion-
corrupted image (b). Forward projections from (b) give the reference projections (c). A displacement field is estimated in projection space
(result shown in Fig. 5) by elastic registration of measured projections (a) to reference projections (c). Using the displacement for a motion-
compensated FBP reconstruction from measured projections (a) yields the motion corrected image (d) from which more accurate reference
projections (e) can be sampled.

(a) (b) (c) (d)

Fig. 5. Motion estimation results. Images show the estimates of
displacements in projection space after the first (a), second (b), and
third (c) iteration. The last pattern (d) is the ground truth.

5. CONCLUSION

Motion correction is a crucial problem, especially for slowly rotating
CT, and recent releases in literature indicate that this topic becomes
increasingly popular. However, the estimation of non-periodic resid-
ual motion in breath-hold acquisitions has not been tackled so far.

This paper introduces a general methodology for motion esti-
mation and compensation in tomography. In particular, a solution
is provided to estimate the motion information for the class of de-
formations that can be described by a strictly increasing bijective
mapping function in projection space. Tackling these specific de-
formations is inspired by the complementary work of Desbat et al.,
showing that exact reconstruction from inconsistent projections and
a motion description, is still possible for this class of deformations.

The extraction of the motion information is based on numerical
integration, without using any prior knowledge about the temporal
or spatial smoothness of the underlying displacement field. This is a
simple non-iterative elastic signal registration procedure that can be
computed in a single pass over the input data.

The proposed iterative motion correction framework can be in-
terpreted as an expectation-maximization (EM) method. The E step
is the sampling of reference projections and the computation of a
displacement field by elastic registration to the corresponding mea-

sured projections. The M step is the analytical motion-compensated
reconstruction that results in a new reference image. If no motion
corrupts the projections, the process converges in one iteration and
reduces to a standard image reconstruction.

The methodology can be relevant for a number of X-ray-based
modalities such as C-arms and radiotherapy systems. An example
of a specific application is the correction of residual motion for soft
tissue imaging from breath-hold acquisitions. Future investigations
will extend the class of admissible deformations and apply the mo-
tion correction technique to the fan-beam geometry. A similar so-
lution could also be proposed for the 3D cone-beam geometry. Al-
though it is expected that, for 2D projections, the image registration
algorithm has to be very different than the one presented here.
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